Версия для слабовидящих
Физики заглянули в душу Солнца и обнаружили нейтрино Печать Email
Новости науки
30.08.2014

После десятилетий поисков физики наконец подтвердили существование низкоэнергетических нейтрино — элементарных частиц, которые практически не взаимодействуют с видимой материей. Это является прямым доказательством теории о том, что ядра Солнца и других звезд производят большое количество таких нейтрино. Частицы эти являются продуктом первого шага ядерной реакции, обеспечивающей сияние светил.

Превращение водорода в гелий является источником 99% энергии Солнца. Каждую секунду наша звезда трансформирует 600 миллионов тонн водорода в гелий.

Многоступенчатый процесс начинается при сильнейшем нагреве и давлении: плотное ядро звезды сжимает пары протонов вместе, чтобы сформировать дейтерий — тяжёлый изотоп водорода с ядром из одного протона и одного нейтрона.

Один из протонов в ходе этого процесса превращается в нейтрон, параллельно высвобождается низкоэнергетический нейтрино и позитрон (античастица электрона).

В то время как позитроны практически мгновенно уничтожаются при столкновении с электронами, нейтрино выбрасываются в космос во всех направлениях и со скоростью, близкой к скорости света.

Другие ядерные реакции на Солнце тоже производят нейтрино, и в результате 100 миллиардов частиц бомбардируют каждый квадратный сантиметр Земли ежесекундно. Однако, как мы уже сказали, нейтрино практически не взаимодействуют с материей, а потому зарегистрировать их крайне сложно.

Электронные нейтрино Солнца были обнаружены с помощью детектора Borexino (фотоBorexino Collaboration).

Низкоэнергетические частицы поймать приборами ещё труднее. Их сигнал может быть заглушен радиоактивным распадом обычных земных материалов. Солнечные нейтрино, имеющие большую энергию, были обнаружены ещё в 1960-х годах, но те, что появляются на свет в ходе протон-протонных реакций, ускользали от взора учёных до настоящего времени.

Теперь специалисты проекта Borexino смогли обнаружить нейтрино, сопровождающие протон-протонную реакцию в ядре Солнца, с помощью детектора "Борексино", расположенного под километром известняковых пород с низкой естественной радиацией в национальной лаборатории Гран-Сассо (Laboratori Nazionali del Gran Sasso) в районе города Л'Аквила, Италия.

Те процессы, что мы описали выше, учёные, изучающие физику Солнца, просчитали давным-давно. Но одно дело построить представление о ядерных реакциях, происходящих в звезде, и другое — иметь тому убедительные доказательства. Физики вполне могли ошибаться относительно того, какие именно реакции происходят и насколько они важны. Поэтому обнаружение детектором Борексино низкоэнергетических электронных нейтрино является достижением эпохального масштаба.

Открытие не только подтверждает, что 90% звёзд Млечного Пути (в том числе те, что похожи на Солнце, а также менее массивные) генерируют большую часть своей энергии таким образом. Теперь на руках у исследователей могут оказаться мгновенные снимки ядра нашей звезды, так как нейтрино прибывают на Землю всего через 8 минут после их создания.

Внутреннее устройство детектора (фото Borexino Collaboration).

"Нейтрино – наш единственный шанс заглянуть с Земли в недра Солнца, – рассказывает Андреа Покар (Andrea Pocar) из университета Массачусетса. – Те нейтрино, что формируются в момент слияния двух протонов и их превращения в дейтерий, особенно сложно изучать. Обнаружить эти частицы сложно, так как они обладают относительно низкой энергией и их можно спутать с теми нейтрино, что выделяются в ходе реакций распада радиоактивных ядер на Земле".

С помощью детектора "Борексино" можно осуществлять наблюдение за всем спектром нейтрино разных энергий. Ядро установки представляет собой нейлоновую сферу толщиной в 100 микрометров и радиусом более 4 метров. Её окружают 200 фотоэлектронных умножителя (ФЭУ). Сфера заполнена 300 тоннами тщательно очищенного жидкого сцинтиллятора. Сцинтиллятор окружён защитным слоем воды, (889 тонн), которая не является сцинтиллятором и предохраняет сосуд от излучения 2212 световых детекторов. Также на установке дополнительно имеются около 2500 ФЭУ.

Одна из основных трудностей, которая стояла перед исследователями, заключалась в устранении фоновых распадов углерода-14 (его период полураспада составляет менее шести тысяч лет). Малое содержание такого изотопа в жидком сцинтилляторе установки и современные статистические методы обработки результатов измерений позволили устранить влияние фоновых процессов.

Прототип Borexino – установка CTF (фото Borexino Collaboration).

"Борексино" может измерять поток низкоэнергетических нейтрино с погрешностью 10%. Будущие эксперименты могут сократить этот показатель до 1%. Это случится, когда в жидкости "выгорят" все радиоактивные атомы углерода-14 и когда физики соберут полные данные об уровне фонового излучения в окрестностях детектора. Возможно, тогда будет совершено открытие новой физики и будут разрешены многие вопросы.

Например, совсем небольшие несоответствия между энергией нейтрино и энергией фотонов в солнечном свете, который достигает Земли, могут выдать присутствие тёмной материи — гипотетического невидимого материала, который может отвечать за большую часть массы во Вселенной.

Эксперименты могут также помочь проверить, насколько хорошо модели описывают превращение нейтрино двух других типов — тау-нейтрино и мюонных нейтрино.

Научная статья об обнаружении низкоэнергетических нейтрино была опубликована в журнале Nature.

Также по теме:
Крупнейший детектор космических частиц обнаружил высокоэнергетические нейтрино 
Недостроенный комплекс NOvA поймал первые дальние нейтрино 
Астрофизики увидели следы частиц тёмной материи в плотных скоплениях галактик 
В Китае построят огромный нейтринный детектор
Рентгеновский импульс из глубин Вселенной может быть следом тёмной материи 

Источник - http://www.vesti.ru/doc.html?id=1929144

 

Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта