Версия для слабовидящих
Как улучшить характеристики памяти с изменяемым фазовым состоянием Печать Email
Новости науки
11.12.2013
Есть несколько технологий изготовления энергонезависимой памяти с произвольным доступом, которая в перспективе должна стать альтернативой широко распространённой флеш-памяти NAND. Недавно мы рассказывали о резистивной методике — RRAM, или ReRAM. Основная идея RRAM заключается в том, что диэлектрики, которые в нормальном состоянии имеют очень высокое сопротивление, после приложения достаточно высокого напряжения могут сформировать внутри себя проводящие нити низкого сопротивления и, по сути, превратиться из диэлектрика в проводник. То есть материал фактически является управляемым постоянным резистором с двумя или более переключаемыми уровнями сопротивления.

Сегодня поговорим об энергонезависимой памяти с изменяемым фазовым состоянием, обозначающейся как PCM, PRAM или даже PCRAM.

Фото Shutterstock.


Принцип работы чипов РСМ основан на свойстве материала носителя (халькогенида) находиться в двух стабильных фазовых состояниях. В одной из этих фаз вещество представляет собой непроводящий аморфный материал, а в другой — кристаллический проводник. Изменение фазового состояния сопровождается переключением между логическим нулём и единицей.

РСМ теоретически может обеспечить принципиально более высокую производительность за счёт того, что элементы памяти могут переключаться быстрее по сравнению с обычной флеш-памятью. Кроме того, значение отдельных битов РСМ можно изменить на 1 или 0 без предварительного стирания целого блока ячеек.

Иллюстрация Shutterstock.


Теперь японские исследователи из Ассоциации низковольтной электроники и Цукубского университета отрапортовали о создании новой технологии, значительно улучшающей характеристики РСМ-памяти. Утверждается, что по сравнению с существующими методиками предложенный способ позволяет сократить время записи и требующуюся силу тока на 90% и более при одновременном увеличении циклов перезаписи до 100 млн.

Почти все существующие прототипы РСМ-накопителей используют халькогениды в сочетании с германием, сурьмой и теллуром (GeSbTe). При нагревании до высокой температуры (более 600 °C) халькогенидная составляющая материала теряет свою кристаллическую структуру. При остывании она превращается в аморфную стеклоподобную форму, а электрическое сопротивление возрастает. При нагревании халькогенида до температуры выше его точки кристаллизации, но ниже температуры плавления он переходит в кристаллическое состояние с куда более низким сопротивлением.

Японцы предлагают применять вместо GeSbTe плёнку с химической формулой GeTe/Sb2Te3. При записи информации напряжение питания равно 0,4 В, что вдвое меньше по сравнению с предыдущими разработками.

Ожидается, что предложенная технология будет готова к выводу на рынок в 2018–2020 годах.

Существуют и другие методы улучшения характеристик памяти с изменяемым фазовым состоянием. Так, для снижения энергопотребления может использоваться особая схема кодирования данных в микрочипах РСМ. Технология основана на том, что процессы чтения/записи имеют асимметричный характер: переход из одного состояния в другое требует интенсивного нагрева в течение короткого времени, а обратный переход происходит при меньшем, но более продолжительном нагреве. Учёные показали, что при помощи комбинирования методов динамического и целочисленного линейного программирования можно минимизировать количество перемещений битов данных. Это позволяет улучшить показатели энергетической эффективности, а также повысить долговечность ячеек.

Подготовлено по материалам Tech-On!.

Источник - http://compulenta.computerra.ru/tehnika/microelectronics/10010526/

 

Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта