Версия для слабовидящих
Нанотехнологии в Беларуси Печать Email
Новости об инновациях
11.12.2013

Внедрение нанотехнологий в медицинскую практику позволит диагностировать и даже лечить ряд заболеваний на ранней стадии. Еще недавно об этом могли писать только фантасты, а теперь в борьбе с тяжелыми заболеваниями открываются новые горизонты, в том числе и белорусскими учеными. Уже сегодня белорусскими нанотехнологами создан противоопухолевый медицинский препарат на основе наночастиц благородных металлов. Корреспондент «Народной газеты» встретилась с лауреатом государственной премии в области науки и техники Беларуси, заведующим лабораторией нанохимии БГУ Михаилом Артемьевым, который рассказал о новых открытиях и возможностях нанотехнологий.

Среди лауреатов Государственной премии Беларуси в области науки и техники представители отечественной школы химического синтеза БГУ – Михаил Артемьев, Анатолий Лесникович и Олег Ивашкевич. Эти ученые создали более ста неорганических соединений на основе микро- и наноразмерных частиц, которые нашли широкое применение в самых разных сферах – от производства ракетного топлива до борьбы с патогенными микроорганизмами

«Обыкновенные материалы, которые мы видим в повседневной жизни в обычных формах, при доведении до наноразмерного состояния могут приобретать принципиально новые физические и химические свойства», – рассказывает Михаил Артемьев.

Однако не все материалы, превращенные в нанопорошок, приобретают новые качества. К примеру, обычный мел даже в виде наночастиц все так же будет белым и нерастворимым в воде. И здесь заключается еще один аспект научной работы — поиск материалов, которые можно представить в виде наночастиц с принципиально новыми свойствами.

Чем же полезно исследование свойств наночастиц? Дело в том, что возможность разложения материала в виде наночастиц позволяет получить новые продукты, которые находят применение в различных сферах: в правоохранительной деятельности, в здравоохранении, промышленности и т. д.

В частности, в ходе научного исследования под руководством академика Анатолия Лесниковича была разработана технология получения дактилоскопических нанопорошков, которые сегодня используются в МВД. Также были созданы антифрикционные присадки к маслам на основе различных наноматериалов, уменьшающие износ трущихся деталей. Они используются для обработки технологического оборудования предприятий.

Кроме того, во время проведения научной работы Анатолий Лесникович открыл новое явление — жидкопламенное горение. Михаил Валентинович любезно показал картинку, на которой запечатлено новое открытие. На поверхности лежит прессованная таблетка. Ее поджигают, сверху образуется раскаленный шар. Все горение происходит на этом шаре, и при этом нет пламени. Это и есть жидкопламенное горение. В свое время информация о новом открытии была опубликована в самом уважаемом научном журнале Nature.

«С конца 1990-х в мире пошел бум на наночастицы полупроводников. Мы по большей части работали с селенидом кадмия, — рассказывает Михаил Артемьев. — Это наш модельный объект, на котором мы исследуем процессы формирования наночастиц полупроводников и их различные физические и химические свойства».

Селенид кадмия весьма интересен. В виде порошка или объемного куска он представляет собой несветящийся материал черного цвета. Однако в виде наночастиц его свойства коренным образом отличаются от свойств объемного материала. Оказалось, что водный раствор с частицами этого вещества светится под ультрафиолетом, причем разными цветами, которые зависят от размера наночастиц. К примеру, раствор с частицами диаметром три нанометра светится зеленым цветом, а пять нанометров — красным. Такой эффект называется люминесценцией. Чем может быть полезно данное открытие?

«Мы можем использовать такие люминесцентные нанокристаллы в струйных принтерах в виде чернил, нанося на банкноты секретные надписи, которые будут светиться под ультрафиолетом, причем любым выбранным цветом, – пояснил Михаил Артемьев. – Сейчас для этого используют органические красители. Они не очень устойчивы на свету и со временем могут выцветать. Наши же полупроводниковые нанокристаллы в тысячу раз более фотоустойчивы».

Лауреатами Государственной премии Беларуси разработана технология использования нанокристаллов в виде водных растворов для флуоресцентного иммунного анализа. Он позволяет определить, здорова та или иная клетка или больна.

Происходит все следующим образом. Берется что-нибудь светящееся. Сейчас для этого используют органический краситель, тот, которым заправляют флуоресцентные канцелярские маркеры. К ним химически «пришивают» молекулы белка, которые взаимодействуют с больными клетками. Клеточный материал обрабатывается флуоресцентным материалом (то есть белковой молекулой со светящейся добавкой). А дальше смотрим результат под ультрафиолетовой лампой. Те клетки, которые светятся, больны.

Для быстрого анализа клеток очень удобно использовать различные цвета нанокристаллов — каждый цвет будет обозначать определенное заболевание, и в ходе одного исследования можно сразу продиагностировать весь клеточный материал.

«Сегодня в онкологии для диагностики клеток используют различные органические красители. Они не очень стабильны. Чтобы получить хорошую картинку, надо довольно долго освещать клеточный материал ультрафиолетовой лампой. В результате молекулы красителей начинают разрушаться, и картинка пропадает, — поясняет Михаил Валентинович. — А нанокристаллы могут светиться часами. Кроме того, мы можем детектировать в трехмерном изображении то место в клетке, где прикрепился наш светящийся маркер с нанокристаллом, что позволит увидеть зараженную область и миграцию больных клеток».

Это выход на технологию сверхчувствительной диагностики, позволяющей выявить заболевания на ранних стадиях, что в свою очередь позволит увеличить шансы на выздоровление.

«Мы первыми в СНГ начали работать с полупроводниковыми нанокристаллами. Уже накоплен большой опыт. Однако синтезировать полупроводник еще полдела. Сейчас основная проблема — процессы взаимодействия нанокристаллов с живым материалом, с клетками. И вопрос в том, как сделать комплекс «нанокристалл-белок» таким, чтобы белок остался рабочим, — рассказывает Михаил Валентинович. — Здесь стоит задача управлять большими молекулами через их присоединение к нанокристаллу. Есть надежда, что, делая такие комплексы нанокристалла с биологической молекулой, мы в состоянии изменить свойства молекулы таким образом, что она может стать полезной в плане излечения того или иного заболевания. То есть в будущем возможна не только диагностика, но и терапия заболеваний».

Сейчас актуальна такая область, как нанотоксикология. Всем известно о токсических свойствах асбеста, неорганического материала на основе силикатов магния, состоящего из длинных тонких игл маленького диаметра (сотни нанометров). Попадая в легкое, асбест протыкает его и застревает там, вызывая кровотечение. Из-за этого и возникают онкологические заболевания легкого. Получается, что наноматериалы не всегда хороши.

«Наночастицы могут убить клетки, потому что они маленькие и несут на поверхности различные молекулы. Если такая наночастица взаимодействует с каким-то белком внутри живой клетки, этот белок может «накручиваться» на наночастицу, потому что их размеры примерно одинаковы, менять свою форму и свойства. Наночастицы могут спровоцировать какие-то заболевания, стать токсичными, — поясняет Михаил Валентинович. — Это как в ядерной физике или атомной энергетике: надо знать, до какой стадии материалы полезны для человека, а после какой становятся вредными».

В планах ученых научиться управлять свойствами наночастиц, когда они взаимодействуют с большими молекулами, биологическим материалом.

Источник - http://www.nanonewsnet.ru/articles/2013/nanotekhnologii-v-belarusi

 

Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта