результаты)....

" /> Нейросеть Microsoft победила Google и Intel в конкурсе на распознавание изображений Версия для слабовидящих
Нейросеть Microsoft победила Google и Intel в конкурсе на распознавание изображений Печать Email
Новости об инновациях
17.12.2015

Программа Microsoft Research первенствовала в нескольких категориях на шестом ежегодном конкурсе по распознаванию изображений ImageNet. Ей удалось превзойти конкурентные системы от Google, Intel, Qualcomm и Tencent, а также от ряда стартапов и научно-исследовательских лабораторий (результаты).

Система-чемпион носит название «Deep Residual Learning for Image Recognition», и к конкурсу в свободном доступе опубликована статьяс описанием технических принципов её работы.

«Мы обучали нейросеть с глубиной более 150 слоёв, — описывают метод исследователи. — При этом использовался фреймворк глубокого остаточного обучения (deep residual learning), который облегчает оптимизацию и сближение крайне глубоких нейросетей. Метод глубокого остаточного обучения позволяет получить дополнительную точность, когда нейросети значительно глубже, чем использовавшиеся ранее. Такое преимущество в точности не наблюдается во многих обычных нейросетях при их углублении».

На иллюстрации нейросеть с остаточным обучением показана в правой колонке.

Технологии глубокого обучения сейчас активно изучаются многими крупными корпорациями. С помощью нейросетей повышают эффективность внутренних систем и повышают качество пользовательских продуктов. В юмористическом стиле Microsoft демонстрировала возможности своих разработок в недавних приложениях по определению возраста и оценке усов. Коммерциализация технологии распознавания изображений происходит через API в рамках проекта «Оксфорд» (Project Oxford), бета-тестирование которого началось месяц назад.

По условиям конкурса ImageNet, программа должна корректно обнаружить и классифицировать объекты на 100 000 фотографиях с Flickr и из различных поисковых систем, выбрав из тысячи тематических категорий (муравей, банан, яблоко и т.д.).

Разработка Microsoft показала уровень ошибок классификации всего 3,5%, а ошибок локализации — 9%.

В предыдущие годы победителями соревнования по уровню классификации объектов выступали Google, стартап Clarifai и NEC.

«Мы даже не предполагали, что одна эта идея [глубокое остаточное обучение] может быть настолько важной», — сказал Цзянь Сан (Jian Sun), один из авторов программы, в официальном блоге .

Источник - http://www.nanonewsnet.ru/news/2015/neiroset-microsoft-pobedila-google-intel-v-konkurse-na-raspoznavanie-izobrazhenii

 

Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта