Версия для слабовидящих
Спросите Итана №35: есть ли у лазеров ограничение по мощности? Печать Email
Новости об инновациях
29.10.2015

Читатель спрашивает: Я задавал этот вопрос моему учителю по оптике в университете 5 лет назад, но он мне не ответил. Мы тогда изучали лазеры и оптический резонатор. Мне стало интересно, сколько фотонов можно закачать в резонатор? Есть ли ограничение по их плотности? Что произойдёт, если превысить этот лимит? [статья в geektimes.ru, NNN]

Начнём с начала – с атома.

Атом, как вы можете знать – позитивно заряженное ядро и несколько электронов, находящихся вокруг него. Электроны могут находиться в ограниченном количестве различных конфигураций, только одна из которых самая оптимальная и стабильная: состояние с наименьшей энергией.

Если возбудить атом нужным образом, его электронная конфигурация изменится и может перейти на уровень с более высокой энергией, т.е. в возбуждённое состояние. При прочих равных это состояние спонтанно выродится обратно в стабильное – либо сразу, либо ступенчатым образом. При этом будет испущен фотон (или фотоны) строго определённой энергии.

Так работает одиночный атом. Но в основном материя состоит из множества связанных между собою атомов. При этом разнообразие всяческих форм материи, кристаллов и газов поражает воображение (хотя и является конечным).

Но всё равно у каждого из них есть определённое количество электронов и энергетических состояний, которые они могут занимать. Если вы можете добавить в систему энергии и возбудить один или несколько электронов, можно заставить её излучать на определённой частоте. А если возбуждать систему определённым контролируемым образом, можно заставить её выдавать излучение на одной и той же частоте, длине волны и направлении каждый раз. И тогда мы получаем лазер.

LASER – это акроним, означающий «light amplification by stimulated emission of radiation» — «усиление света посредством вынужденного излучения». Хотя, на самом деле, никакого усиления не происходит. Электроны осциллируют между возбуждённым и невозбуждённым состоянием, или между двумя возбуждёнными. Но почему-то акроним Light Oscillation by Stimulated Emission of Radiation (LOSER) использовать не захотели.

А вот спонтанное излучение как раз очень важно.

Если вы добьётесь от множества атомов или молекул того, чтобы они перешли в одинаковое возбуждённое состояние, и затем простимулируете их спонтанное возвращение в состояние с минимальной энергией, они испустят фотоны с одинаковой энергией. Эти переходы происходят очень быстро (но не бесконечно быстро), поэтому теоретически есть предел тому, как быстро атом может перепрыгнуть в возбуждённое состояние и испустить фотон. Системе нужно время на перезагрузку.

Обычно для создания лазера в резонаторе используется газ, кристалл или иной молекулярный материал. Но это не единственный способ!

Лазер можно изготовить при помощи свободных электронов, полупроводников, оптоволокна и даже, возможно,

позитрония

. Излучение может варьироваться от сверхдлинных радиоволн до коротких рентгеновских лучей, а в теории даже и до гамма-излучения. Подобные процессы могут даже естественным образом

происходить в космосе

. Обычно они происходят в когерентно движущихся облаках на микроволновых волнах. Но некоторые из этих явлений вполне могут достичь и состояния, при котором они будут испускать видимые лазерные лучи.

С развитием технологий мощность излучения лазеров возрастает, и ограничивается лишь практическими рамками современных технологий. Можно задаться вопросом о существовании принципиального ограничения количества фотонов, которое может произвести лазер, поскольку существует ограничение на количество электронов, которые можно втиснуть в заданный участок пространства.

В квантовой механике существует

принцип Паули

, который говорит, что два и более тождественных фермиона не могут одновременно находиться в одном квантовом состоянии. Однако этот принцип распространяется только на частицы вроде электронов или кварков, у которых спин полуцелый: ±1/2, ±3/2, ±5/2. Для частиц с целым спином не существует подобных ограничений на нахождение в одном и том же состоянии.

Поэтому «обычная материя» и занимает определённое место в пространстве. Но не всё подчиняется этому правилу.

Фотон, частица, испускаемая, разными лазерами, имеет спин ±1, поэтому теоретически можно впихнуть любое число фотонов в ограниченное пространство.

Теоретически это очень важно, поскольку если вы сможете придумать нужную технологию, не существует ограничений на мощность, которую вы сможете получить!

Практически, все лазеры с резонаторами работают на максимуме мощности, но существуют практические ограничения на используемые материалы. В принципе, если взять достаточно мощный лазер, и создать большой оптический резонатор из зеркал, и сделать одно из зеркал сдвижным, то можно сжать излучаемый свет даже до состояния чёрной дыры.

Так что практически ограничение существует. Но теоретически оно связано лишь с используемыми физическими материалами. Чем лучше и совершеннее материалы мы будем находить и использовать, тем больших плотностей энергии мы сможем достичь, без каких бы то ни было ограничений.

Обновление: Физик Чад Орзел, ведущий свой блог, считает, что хотя и не существует ограничений на энергию получаемых фотонов, в какой-то момент (примерно по достижению фотонами 1 МэВ) при взаимодействии фотона с отражающей поверхностью у вас начнут спонтанно возникать пары материя-антиматерия. Поэтому при высоких энергиях ваш лазер превратится в сауну, наполненную материей и антиматерией, а не просто когерентным светом. Так что это вполне сможет послужить ограничением на мощность лазера. Извините, но чёрную дыру таким образом сделать, видимо, не получится.

Источник - http://www.nanonewsnet.ru/articles/2015/sprosite-itana-35-est-li-u-lazerov-ogranichenie-po-moshchnosti

 

Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта