Версия для слабовидящих
Разработаны сверхбыстрые тонкопленочные транзисторы для электронных устройств будущего Печать Email
Новости об инновациях
07.10.2015

Приветствуем вас на страницах блога iCover! [пост на сайте geektimes.ru] Сегодня мы остановимся на событии, знаковом для всего мира микроэлектроники, а именно – создании тонкопленочного транзистора нового поколения, срабатывающего на порядок быстрее существующих аналогов.

Чрезвычайно тонкие прозрачные тонкопленочные транзисторы – один из ключевых компонентов жидкокристаллической TFT матрицы ЖК-дисплея. Краеугольным камнем в улучшении качественных показателей матрицы остается скорость переключения транзистора, над повышением которой работают в ведущих лабораториях мира. Корейским ученым удалось создать тонкопленочный транзистор электронных устройств будущего, срабатывающий на порядок быстрее существующих.

Тонкопленочные транзисторы – не что иное как обычные полевые транзисторы, металлические контакты и полупроводниковые каналы проводимости которых представлены тонкими пленками, толщиной в 0,01 … 0, 01 мк. Будучи нанесенными на поверхность стекла или прозрачного полимерного материала, они располагаются максимально близко к подконтрольным им ячейкам-пикселям, что позволяет обеспечить стабильное контрастное и насыщенное изображение, отсутствие “хвостов” у движущихся объектов, достаточную для комфортной работы и отдыха скорость реакции матрицы.

Подвижность перемещения носителей заряда в полупроводнике равна скорости их перемещения, измеренной в сантиметрах в секунду, где на каждый сантиметр длины прилагается один вольт напряжения. Чем меньше электрическое сопротивление материала, тем быстрее способны перемещаться заряды, а значит, тем быстрее будут переключаться единичные тонкопленочные транзисторы, из которых он состоит.

Совместные исследования, проведенные специалистами компании Samsung национального университета Кореи (Korea University) и Института передовых технологий компании Samsung (Samsung Advanced Institute of Technology) предложили новый тип тонкопленочного транзистора с быстродействием на порядок превышающим этот показатель у существующих аналогов. Запуск такого транзистора в серийное производство позволит значительно увеличить быстродействие ЖК дисплеев телевизоров, смартфонов и планшетных компьютеров с активной матрицей TFT(Thin Film Transistor).

Чтобы получить транзистор с подобными техническими характеристиками ученые использовали плазму из ионов инертного газа аргона. В качестве основного компонента, используемого для создания транзистора выступил оксинитрид цинка (ZnON), полученный методом магнетронного распыления.

Соединения на базе оксида цинка, как основы при создании тонкопленочных структур с высокой скоростью перемещения зарядов уже давно в зоне особого внимания ученых. Вместе с тем, основной акцент в ходе проводимых экспериментов был размещен на допировании (введении небольшого количества примесей) материала-основы катионами различных металлов – индия, галлия, гафния, циркония и лантаноидов.

Предел скорости перемещения дырок и электронов в электрическом поле полупроводника сегодня достигает 5 до 20 см2/вольт*сек, в то время как

” … Для обеспечения высокой производительности и экономичности электронных устройств будущего требуется обеспечить подвижность носителей электрического заряда свыше 100 см2/вольт*сек …” – считает профессор Сэнгун Чон (Sanghun Jeon) из национального университета Кореи. «Подвижность носителей заряда в созданных нами цинковых транзисторах, как минимум, в десять раз превышает подвижность носителей в обычных тонкопленочных транзисторах».

Описанный результат был получен, главным образом благодаря включению в технологический цикл этапа осаждения материала из смеси аргона, кислорода (О2) и смеси азота (N2). Попеременное воздействие на цинковую “подложку” перечисленными газами при постоянном давлении азота и аргона и тщательно регулируемом в заданных пределах давлении кислорода позволило сформировать тончайшую (в 50нм) пленку. Столь высокие показатели подвижности носителей заряда в оксинитриде цинка стали возможны благодаря заполнению азотом кислородных вакансий оксидной структуры. Получить такую пленку в присутствии атмосферного кислорода, в связи с низкой взаимной активностью азота и цинка, в условиях, отличных от предложенных специалистами на сегодняшний день проблематично.

Для того, чтобы свести к минимуму влияние кислорода на протекающую реакцию и повысить прочность пленки в эксперименте была использована аргоновая плазма, которая, помимо функции “барьера” стимулировала каскады столкновений атомов и ионов. Такая искусственная стимуляция позволила перераспределить энергии химических реакций и запустить процесс создания в аморфной матрице нанокристаллов — устойчивых химических соединений между азотом, цинком и кислородом.

Полученная пленка оксинитрида цинка характеризуется стабильной и равномерной поликристаллической структурой, стойкой к активным химическим веществам и излучению. В ходе тестовых испытаний инновационный пленочный транзистор и пленочный транзистор, полученный традиционным способом были подвергнуты 30-ти дневному воздействию атмосферного воздуха. По истечении срока выяснилось, что пленка оксинитрида цинка, в отличие от традиционной, практически не потеряла своих первоначальных свойств. Измерение подвижности носителей заряда показало, что этот показатель составил 138 см2/вольт*сек, что на порядок превышает подвижность носителей в пленках, полученных традиционным способом на основе окиси цинка – галлия – индия.

Таким образом, результаты эксперимента однозначно подтвердили новый абсолютный рекорд подвижности носителей электрического заряда в тонкопленочном транзисторе на основе оксинитрида цинка ZnON.

Безусловно, несмотря на блестящие результаты эксперимента, подтвердившие эффективность рассматриваемой технологии, проведение опытов в условиях лаборатории существенно ограничили возможности исследователей, как в плане получения требуемого уровня повторяемости результатов, так и в отношении проверки потенциала катионов других металлов на предмет улучшения уже достигнутых показателей.

Подробнее с результатами работы ученых можно ознакомиться на сайте Applied Physics Letters.

Источник - http://www.nanonewsnet.ru/news/2015/razrabotany-sverkhbystrye-tonkoplenochnye-tranzistory-dlya-elektronnykh-ustroistv-budushch

 

Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта