Версия для слабовидящих
Ученые выяснили, что тепло распространяется в графене и других "плоских" материалах в виде тепловых волн Печать Email
Новости об инновациях
18.03.2015

Управление потоками тепла является одной из достаточно больших проблем в современной электронике. Для отвода излишков тепла используют радиаторы, вентиляторы, водяное охлаждение и другие, более сложные системы. Но, постоянно увеличивающаяся плотность монтажа радиоэлектронных компонентов и более высокие частоты работы полупроводниковых приборов делают современные чипы настолько горячими, что для их эффективного охлаждения требуются совершенно новые решения.

Графен, форма углерода, кристаллическая решетка которого имеет толщину в один атом, обладает множеством уникальных свойств, что делает этот материал весьма перспективным с точки зрения применения его в электронике будущего. А чрезвычайно высокая удельная теплопроводность графена позволяет рассматривать его в качестве материала для высокоэффективных систем охлаждения нового класса.

Исследователи из Швейцарского федерального политехнического университета Лозанны (Swiss Ecole Polytechnique Federale de Lausanne, EPFL) сделали достаточно большой шаг в этом направлении, изучив в доскональности процесс переноса тепла в графене и в других плоских материалах, который в корне отличается от аналогичного процесса в обычных материалах.

Оказывается, что

тепловая энергия в графене переносится в виде волн, подобно тому, как звук распространяется в воздухе или в другой среде.

«Наши расчеты показывают, что транспорт тепла в графене и в других плоских материалах, в том числе и в тех, которые еще не были изучены, описывается волновыми процессами и соответствующими функциями» – объясняет Андреа Чепеллотти (Andrea Cepellotti), одна из исследователей, – «Это – чрезвычайно важная информация для инженеров, которые получили возможность приспособить дизайн будущих электронных компонентов под особенности свойств двухмерных материалов».

В обычных трехмерных материалах тепло переносится при помощи колебаний атомов в кристаллической решетке.

Колеблющиеся атомы объединяются в группы, которые формируют своего рода квазичастицы, именуемые фононами. Фононы могут сталкиваться друг с другом, объединяться, расщепляться и такое их поведение, зависящее от особенностей структуры каждого материала, ограничивает удельную теплопроводность этого материала. Исключением являются температуры, близкие к абсолютному нулю (ниже –200 градусов Цельсия), в этих условиях фононы двигаются упорядоченным образом и тепло переносится абсолютно без потерь.

В двухмерных материалах процесс переноса тепла осуществляется совершенно по-иному. Даже при комнатной температуре тепло передается без рассеивания и потерь, и происходит это из-за волнового явления, получившего название «вторичный звук» (second sound).

Явление вторичного звука обуславливает то, что колебания абсолютно всех фононов, даже удаленных на очень большое расстояние, всегда находятся в одной и той же фазе. И даже при взаимодействии отдельных фононов они не подавляют и не рассеивают друг друга.

«Созданные нами математические модели, основанные на базовых физических принципах, демонстрируют, что листы материалов одноатомной толщины ведут себя при комнатной температуре таким образом, как и обычные материалы при сверхнизких температурах» – рассказывает Андреа Чепеллотти, – «И этот необычайный эффект можно и надо использовать при создании систем охлаждения электроники следующих поколений».

Источник - http://www.nanonewsnet.ru/news/2015/uchenye-vyyasnili-chto-teplo-rasprostranyaetsya-v-grafene-drugikh-ploskikh-materialakh-v-v

 

Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта