Версия для слабовидящих
НИТУ «МИСиС» и университет «Нотр Дам» работают над новым поколением суперкомпьютеров Печать Email
Новости об инновациях
28.11.2014

НИТУ «МИСиС» и университет «Нотр Дам» (штат Индиана, США) начинают работу по созданию сверхмаленьких электронных компонентов для компьютеров и девайсов нового поколения, на 1–2 порядка более компактных по сравнению с существующими аналогами.

Это, в частности, позволит не только уменьшить размер машин, но и повысить их эффективность, снизив расходуемую энергию за счёт ухода от режима «пьяного матроса».

Одноэлектроника

«Все современные компьютеры работают в т.н. режиме «пьяного матроса», — рассказывает Алексей Орлов, приглашённый профессор кафедры «Электрическая инженерия» университета Нотр Дам. — Дело в том, что при любой операции с битами, будь то сохранение или их удаление, у вас происходит существенный перерасход энергии: потребляется как минимум вдвое больше мощности, чем это необходимо. Обратите внимание: с 2003 г. тактовые частоты всех компьютеров фактически перестали расти. Это связано с тем, что мы не можем отвести достаточное количество тепла от наших компьютеров с помощью вентиляторов, наш чип, попросту говоря, будет расплавляться при дальнейших серьёзных шагах по увеличению мощности. А ведь эта расплескиваемая энергия могла бы идти на рост производительности! Какое может быть решение вопроса? Выходом здесь призвана стать наноэлектроника с её передним краем одноэлектроникой. Например, размер транзисторов в планшетах «Ipad» сегодня составляет примерно 20 нанометров. Мы стремимся к размерам транзисторов в 1 нанометр, которые практически не будут рассеивать энергию. Но не всё так просто».

По словам учёного, сегодня встаёт вопрос ограничений, накладываемых существующими технологиями.

«Кремний является тем материалом, который как никакой другой радикально изменил современный нам мир. Полупроводниковые кремниевые технологии легли в основу развития IT-индустрии и средств связи, фактически создав информационное общество, общество, которое характеризуется небывалыми достижениями человечества в интеллектуальной сфере. Однако век этого материала в области компьютерных технологий подходит к концу. Дело в том, что все новые решения хороши, когда следующее поколении более дешево и эффективно по сравнению с предыдущим. А сейчас складывается ситуация, при которой следующий шаг в производстве чипов может быть чуть ли не последним, потому как затрачиваемые ресурсы и получаемый эффект будут несопоставимы. Нам нужны новые материалы, и одним из способов ухода от кремния может стать использование железных наномагнитов. На этих материалах, размером, например, 50 нанометров, уже сегодня собираются целые устройства и схемы, и, на мой взгляд, именно за данным решением стоит будущее компьютерных технологий».

Одновременно с уменьшением электронной компонентной базы произойдёт и снижение потребляемой мощности.

«Уже сегодня новейший чип «Intel Core i7» размером квадратный сантиметр с 10 млрд транзисторов на нём (чип применяется в современных ноутбуках) потребляет порядка 180 Ватт мощности, что сравнимо с уровнем тока в троллейбусе! Он рассеивает тепло, как если бы одновременно зажечь 7 сигарет. И половина этой энергии попросту «расплёскивается», — отмечает Алексей Орлов. — Именно поэтому нам необходим переход к новым материалам, которые позволили бы канализировать энергию впрок, одновременно уменьшив размеры девайсов. Ещё один пример: для того, чтобы построить суперкомпьютер следующего поколения, нам придётся соорудить около него ядерный реактор, потому как потребляемая энергия будет больше гигаватта».

По словам профессора, в совместном проекте с МИСиС учёных из США интересует прежде всего области физической химии и анализа поверхности, где у московского университета исторически есть серьёзные компетенции.

«Одна из проблем, которую нам предстоит решить для создания сверхмаленьких и энергоэффективных устройств, это их правильное «строительство» на уровне атомов, речь идёт о т.н. атомном нанесении слоёв. Нам интересно понимать, как взаимодействуют те или иные материалы на наноуровне при их совмещении, как ведут себя их электроны. Дело в том, что спускаясь на уровни взаимодействия электронов из разных слоёв, может получиться так, что электроны взаимодействовать друг с другом не хотят, материалы попросту не прилипают друг к другу. Вы хотите нарастить плёнку изолятора, а она не хочет расти! Как раз в этом вопросе помощь МИСиС будет очень кстати», — резюмирует Алексей Орлов.

Наноэлектроника Область электроники, занимающаяся разработкой физических и технологических основ создания интегральных электронных схем с характерными топологическими размерами элементов менее микрона (1000 нанометров). 100 микрон это в 10 раз меньше 1 миллиметра. Размер молекулы может составлять нанометр.

Одноэлектроника Область электроники, занимающаяся разработкой устройств, в которых контролируется движение даже не группы, а отдельных электронов. Например, в одноэлектронных устройствах памяти один электрон эквивалентен одному биту информации. Одноэлектронные транзисторы особенно эффективны в интегральной наноэлектронике, поскольку позволяют осуществить связь (интерфейс) макроскопического мира с миром наноэлектронных и молекулярных процессов и устройств.

Транзистор Радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналом управлять током в электрической цепи. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора — изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде.

Источник - http://www.nanonewsnet.ru/news/2014/nitu-misis-universitet-notr-dam-rabotayut-nad-novym-pokoleniem-superkompyuterov

 

Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта Карта сайта